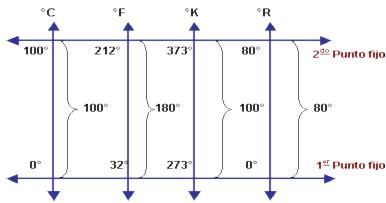
INSTITUCION EDUCATIVA MARINO RENJIFO SALCEDO ACTIVIDADES DE REFUERZO DE COMPONENTE FISICO OCTAVO

Termología: es la parte de la Física que estudia las leyes que rigen los fenómenos caloríficos.

Temperatura. El concepto de **temperatura** es intuitivo y se basa en la sensación de frío o calor que sentimos al tocar un cuerpo. Sin embargo, está sensación de frío o calor no es suficiente para caracterizar el estado de calentamiento de un cuerpo, pues ella depende de varios factores.


Por tanto; definiremos a la **temperatura** como la magnitud física que mide el estado de agitación de las partículas de un cuerpo, caracterizando su estado térmico.

Puntos fijos: son dos (2) puntos característicos en que la experiencia muestra que algunos fenómenos se reproducen siempre en las mismas condiciones.

1º Punto fijo: es el punto de fusión del hielo y es el estado térmico en que aparecen en equilibrio los estados sólido y líquido del agua pura.

2^{do} Punto fijo: es el punto de ebullición del agua y es el estado térmico del vapor de agua en ebullición.

Escalas Termométricas

Relación entre las Escalas Termométricas

$$\frac{^{\circ}\text{C}}{5} = \frac{^{\circ}\text{K} \cdot 273}{5} = \frac{^{\circ}\text{F} \cdot 32}{9} = \frac{^{\circ}\text{R}}{4}$$

Termometría - Problemas

- 1- Transforme 50 °C en grados Fahrenheit.
- 2- Transforme 20 °C en grados Fahrenheit.
- 3- Transforme según la ecuación de conversión: a) 15 °C a °F; y b) -10 °F a °C.
- 4- La temperatura en un salón es 24 °C. ¿Cuál será la lectura en la escala Fahrenheit?
- 5- Un médico inglés mide la temperatura de un paciente y obtiene 106 °F. ¿Cuál será la lectura en la escala Celsius?
- 6- Completar el siguiente cuadro: utilizando la ecuación de conversión:

Centígrado	Fahrenheit	Kelvin	Réaumur
200 °C			
	40 °F		
-5 °C			
		400 K	
			40 R

Problema nº 1 de termostática.

Coeficientes de Dilatación Lineal (a)

Material	Coeficiente (1/°C)	Material	Coeficiente (1/°C)
Acero Dulce	0,000012	Hierro Fundido	0,0000105
Acero Níquel	0,0000015	Latón	0,0000185
Alpaca	0,000018	Molibdeno	0,0000052
Aluminio	0,0000238	Níquel	0,000013
Bismuto	0,0000135	Oro	0,0000142
Bronce	0,0000175	Plata	0,0000197
Cadmio	0,00003	Platino	0,000009
Cinc	0,00003	Plomo	0,000029
Cobre	0,0000165	Porcelana	0,000004
Cuarzo	0,0000005	Tungsteno	0,0000045
Estaño	0,000023	Vidrio Común	0,000009
Esteatita	0,0000085	Vidrio Pirex	0,0000003

Ejemplo n° 1) ¿Cuál será el coeficiente de dilatación lineal de un metal sabiendo que la temperatura varía de 95 °C a 20°C cuando un alambre de ese metal pasa de 160 m a 159,82 m?

Desarrollo_Datos: $t^{\circ}_{1} = 95$ °C; $t^{\circ}_{2} = 20$ °C; $l_{1} = 160$ m; $l_{2} = 159,82$ m. Fórmulas: Δ $l = \alpha \cdot l_{1} \cdot \Delta t^{\circ}$

Solución: de la fórmula $\Delta I = \alpha \cdot I_1 \cdot \Delta t^\circ$ despejamos α y obtenemos $\Delta I/(I_1 \cdot \Delta t^\circ) = \alpha$

 $\alpha = (I_2 - I_1)/[(t^{\circ}_2 - t^{\circ}_1) \cdot I_1]$

 $\alpha = (159.82 \text{ m} - 160 \text{ m})/[(20 ^{\circ}\text{C} - 95 ^{\circ}\text{C}) \cdot 160 \text{ m}]$

Realizamos las operaciones:

 $\alpha = (-0.18 \text{ m})/(-75 \text{ °C} \cdot 160 \text{ m})$

 $\alpha = (-0.18 \text{ m})/(-12.000 \text{ °C·m})$ Cancelamos los signos negativos:

 $\alpha = 0.18 \text{ m/}(12.000 \,^{\circ}\text{C}\cdot\text{m})$ dividimos y cancelamos m.

 $\alpha = 0.000015/^{\circ}C$

Ejemplo n° 2) Calcular la relación de longitudes que deben cumplir dos varillas cuyos coeficientes de dilatación son de 0,0000097/°C y 0,0000117/°C, para que a cualquier temperatura la diferencia sea de 5 cm.

Datos: Diferencia = 5 cm = 0,05 m; α_{v1} = 0,0000097/°C; α_{v2} = 0,0000117/°C

Fórmulas: $\Delta I = \alpha \cdot I_1 \cdot \Delta t^\circ$

Solución: fórmula para varilla 1: $\Delta I_{v1} = \alpha_{v1} \cdot I_{v1} \cdot \Delta t^{\circ}_{v1}$ fórmula para varilla 2: $\Delta I_{v2} = \alpha_{v2} \cdot I_{v2} \cdot \Delta t^{\circ}_{v2}$

Las temperaturas iniciales y finales son iguales: $\Delta t^{\circ}_{v1} = \Delta t^{\circ}_{v2}$

Lo que pide es: ΔI_{v1} - ΔI_{v2} = 0,05 m pero esto no es opción, porque depende de los coeficientes de dilatación de cada metal y se resuelve haciendo la razón entre ellos:

 $r = \alpha_{v2} \div \alpha_{v1}$

 $r = 0.0000117/^{\circ}C \div 0.0000097/^{\circ}C$

r = 1,2062

Problema n° 1) Una cinta métrica de acero (α = 0,000012/°C) es exacta a 0 °C. Se efectúa una medición de 50 m un día en que la temperatura es de 32 °C. ¿Cuál es su verdadero valor?

Problema n° 2) Calcular la longitud de un hilo de cobre (α = 0,0000117/°C) calentado por el sol hasta 55 °C, si a 0 °C su longitud era de 1.400 m.

Problema n° 3) La longitud de una barra de hierro (α = 0,0000118/°C) a 35 °C es de 1,8 m. Si se calienta hasta 380 °C, ¿cuál es el aumento de longitud que experimentó?

Problema n° 4) Se tienen dos varillas de acero (α = 0,000012/°C). La primera tiene exactamente un metro de longitud a los 0 °C y la otra a los 30 °C. ¿Cuál será la diferencia de longitudes a los 18 °C?

Problema n° 5) Calcular la longitud a 0 °C de un hilo de cobre que a 120 °C tiene una longitud de 1.200 m.